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Abstract-Natural convection in a porous horizontal circular cylinder is considered. The cylinder wall is 
non-uniformly heated to establish a linear temperature in the vertical direction, with the end sections 
perfectly insulated. When L > 0.86, a unique three-dimensional flow is determined at the onset of convec- 
tion. For short cylinders (L < 0.86) the convection is two-dimensional. In this case there exist two different 
steady solutions at supercritical Rayleigh numbers, consisting of two and three rolls, respectively. It is 
proved that both flow structures and any composition of these structures are stable. However, introducing 

thermal forcing in the applied temperature the flow becomes uniquely determined. 

1. INTRODUCTION 

THERMAL convection in a saturated porous medium 
has attracted considerable attention over the last 20 
years. This interest in buoyancy induced flow and heat 

transfer through porous media has been stimulated 
by several important technical and geophysical appli- 
cations. We mention applications in geothermal 
energy recovery [l], extraction of oil and gas from 
permeable rock reservoirs [2] and radioactive waste 
heat removal [3]. 

The present study is concerned with natural con- 
vection in a porous medium confined by a horizontal 
circular cylinder. This problem has been studied by 
Lyubimov [4]. He considered two different situations 

of external heating. In one case, when the temperature 
distribution was linear in the vertical direction, infi- 
nitely many stable stationary solutions were found. In 
the second case, when the temperature was not strictly 
linear, only one stationary motion was stable. His 

study is restricted to two-dimensional convection, 
which seems to be consistent only for short cylinders. 
Moreover, the paper contains no information about 
the values of the critical Rayleigh number and the 
flow patterns occurring for supercritical Rayleigh 

numbers. We focus, however, our interest on the 
physical interpretation of the mathematical results, 
including both two- and three-dimensional con- 

vection. 
The mathematical formulation of the problem is 

derived in Section 2. In Section 3 we analyse the mar- 
ginal stability when the cylinder wall is non-uniformly 
heated to establish a linear temperature distribution 
in the vertical direction. For long cylinders there exists 
a unique three-dimensional steady solution at the 
onset of convection. For short cylinders, however, it 

turns out that the convection is two-dimensional. In 
this case we find two different steady solutions at 
supercritical Rayleigh numbers. One of the solutions 
yields a flow pattern consisting of two cells only, 
whereas the other flow pattern consists of three cells. 

In Section 4 we apply non-linear analysis to examine 
the stability of the two different solutions. It is proved 
that both flow structures are stable. In addition, it 
also turns out that any composition of these two flows 
is a stable non-linear solution. 

In Section 5 we consider the effect of thermal forcing 
applied to short cylinders. We employ the theory of 
singular perturbations of bifurcations described by 

Matkowsky and Reiss [5] and Tavantzis et al. [6]. It 
is shown that small imperfections, such as thermal 

forcing in the applied temperature, are sufficient to 
ensure smooth transition to convection. We also find 
that the perturbations of the applied temperature 
uniquely determine the composite non-linear flow and 
the sign of the circulation. 

We notice the hydraulic analogy between the flow 
in a porous medium and the flow in a narrow gap 

between parallel vertical walls, i.e. Hele-Shaw cell. 
Hartline and Lister [7] have shown that the governing 
equations for convection in a Hele-Shaw cell are the 

same as the two-dimensional version of the governing 
equations, given in equations (4). Our investigations 

concerning short cylinders can therefore be applied to 
a circular Hele-Shaw cell. 

2. GOVERNING EQUATIONS 

We consider natural convection in a porous 
medium confined by a horizontal cylinder of radius 
r0 and length L. The porous medium is isotropic, 
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NOMENCLATURE 

A amplitude 

4 Fourier coefficients 

A,, A,s Landau coefficients 

4, Fourier coefficients 
d derivative with respect to r, d/dr 

.Y acceleration of gravity 

G,, Fourier coefficients 

H,, Fourier coefficients 

j vertical unit vector 
k permeability 
L length of the cylinder 
m mode number 

N, even integer 

N, odd integer 

P pressure 
P,, P,s Landau coefficients 

Q amplitude 
t radial coordinate 

r. radius of the cylinder 
Ra Rayleigh number, g/?ATkr,/w 

S amplitude 
t time 
T temperature 

T, reference temperature 

Th temperature at the cylinder wall, 
T,, - 1/2AT sin 4 

AT characteristic temperature difference 
V velocity 
I horizontal coordinate along the cylinder 

axis. 

Greek symbols 

; 

wave number 

coefficient of cubical expansion 
‘J, 6, E small parameters 
6 lli Kronecker delta 
0 deviation from static temperature 
li thermal diffusivity 

P constant 
\’ kinematic viscosity 

: 

azimuthal coordinate 
stream function. 

Subscripts 
C critical values 
S static values. 

Superscripts 
deviation from static values. 

homogeneous and saturated by an incompressible 
fluid. Cylindrical coordinates (r, 4, z) are employed 
with the origin located at one end section, with the Z- 
axis along the axis of the cylinder and the plane 4 = 0 
being horizontal. The cylinder wall is at a prescribed 

temperature. given by 

T, = T,-:ATsin 4 (1) 

while the end sections of the cylinder are perfectly 
insulated. All boundaries are assumed impermeable. 
The value of AT is taken to be positive so that the 
medium is heated from below. In Appendix A we have 
described one situation defining a circumferential tem- 

perature as given by equation (1). However, in that 
specific case, we assumed that no heat exchange took 
place through the cylinder wall. In the present prob- 
lem we assume that the heat conductivity of the 
medium inside the cylinder is small compared to the 
heat conductivity of the medium (e.g. aluminium) 
outside the cylinder. In that case equation (1) defines 
a very good approximation of the cylinder wall tem- 

perature. 
If AT is sufficiently small, the heat transfer in the 

porous medium will be in the form of conduction. A 

steady state exists where 

T = T, = T, - ;ATi sin 4, p = p5, v = 0. (2) 

For larger values of AT, in the convective regime, we 
can write 

T= T,+& p=ps+d, v=+. (3) 

All quantities are now made dimensionless. For ex- 

ample, r, z and L are scaled by the characteristic 
length r,,. 

Invoking the Darcy-Boussinesq approximations 

the convection is governed by the following equations 
(the tildes are omitted) : 

Vp-RaBj+v=O 

v-v=0 

By eliminating the velocity term on the left-hand side 
we obtain 

V’p-Ra 

At the boundaries we have 
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a0 ap 
az=az=o’ z=O,L 

S2LO 
ar ’ 

r= 1. 

3. MARGINAL STABILITY 

The marginal stability problem is defined by the 
linear version of equations (5) with boundary con- 
ditions (6). This linear system is self-adjoint, giving 
%)/at = 0 at the marginal state. The solution can then 
be expressed by the following Fourier series : 

P= ;A,+ f (A,cosnf$+B,sinr$) cosc~z 
n= I 

cos n$~ + H, sin n#) cos LYZ 

(7) 

where the Fourier coefficients (amplitudes) are func- 
tions of r. To satisfy the boundary conditions at the 
end sections the wave number cz is given by 

u,mn 
L’ 

m=0,1,2,... 

Introducing expansions (7) into equations (5) and 
boundary conditions (6), equating terms with the 
same +-dependence, we get two systems of ordinary 
differential equations: one for A,, H,, and the other 
for B,,, G,. The system for B,, G,, is 

-(d-$,)=0 

d2+;d-n2-n'+;Ra)G,-+((d+q)Bn+, 

- (+l)~“_,)=o (9) 

dB,,=G,=O, r= 1. (10) 

Heren=0,1,2 ,..., G_, = G, and B_, = -B,. We 
notice the coordinate singularity at r = 0. However, 
the pressure, velocity and temperature are finite single- 
valued functions, which require at r = 0 : 

dB,,=dG,=O, n=0,2,3 

jI_“,iB,, = lil+iG,, = 0, n = 2,3,4 

lii(d-;)B, =!,(d-;)G, =O. (II) 

Both systems ofequations also separate even and odd 

values of the azimuthal modes. We therefore end up 
with four independent systems. The coupled ampli- 
tudes in each system become : 

system I 

system II 

(B,, B,, . , Go, G,, .I 

system III 

(B,, Bd,. . , G,, G,, .I 

(A,,Az,...,H,,H,,...) 

system IV 

@,,A,, . . . . H,,H,,.. .). 

We have found it convenient to solve the equations 
by a power series expansion in r. On taking into 
account conditions (11) the solution of equations (9) 
for system I may be approximated by the finite series 

B, = r” ; c, i b!$r2J, n= 1,3,...,N, 

G, = rn t c, i g$r2’, n = 0,2, . . , N,. 
z=o j= 0 

(12) 

Here N represents the number of terms taken into 
account in Fourier series (7) and N, and N, are odd 
and even integers, respectively, equal to N or N- 1. 
The finite series introduced into equations (9) deter- 
mine the coefficients bi] and gij for j > 0. For j = 0 
the coefficients are set equal to the Kronecker delta 
6,. Finally, conditions (10) determine the constants 
c, and generate an eigenvalue relation of the form 
,f(a, Ra) = 0. It turns out by computations that the 
solution converges rapidly as N and J increase. For a 
large number of t( we have calculated the value of Ra 

for (N, J) equal to (6, 20) and (9, 30). The difference 
between the two values of Ra was always less than 
10-4. 

The four systems of equations, denoted by I, II, III 
and IV, give four different solutions. The cor- 
responding neutral curves, also denoted by I, II, III 
and IV, are shown in Fig. 1. The onset of convection 
is determined by the solution with the lowest Rayleigh 
number. It follows from the figure that solution I is 
generated at the onset of convection whenever s( # 0 
(three-dimensional convection), whereas both I and 
II are generated when CI = 0. Solutions III and IV are 
not generated at the onset of convection for any value 
ofa. 

The wave number 3 is restricted by the relation: 
c( = mn/L (equation (S)), where m is the mode number 
in the direction of the cylinder axis. The value of o! at 
the onset of convection is the one giving the lowest 
value of the Rayleigh number. This determines the 
mode number m for a given value of L. 

In Fig. 2 we have displayed Ra as a function of 
L for m = 0, 1, 2,. corresponding to solution I in 
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FIG. I. The four neutral curves corresponding to solutions 
1. II, III and IV. 

Fig. 1. As shown in Fig. 2, the critical mode number for 
LE [0, 0.861 is m = 0, giving Ru, = 46.27 and z, = 0. 

In this case the convection is two-dimensional given 
by solution I or solution II, or a linear combination 
of these. Moreover, for the range L E [0.86, 2.601 the 
critical mode number is m = 1. For the range L E [2.60, 
4.411, M = 2 and c( = 2n/L, etc. 

46.2: 

Ra 

m=O : 

1 

___ 

32 

m-5 3 
31.21 

0.86 2.60 4.41 6.20 7.99 9. 

30 
0 2 4 6 8 L 10 

FIG. 2. Ru displayed as a function of L for different values of the mode number m. 

In the limit of an infinite long cylinder a becomes a 

free parameter, and the critical values are Ra, = 3 1.24 
and xC = 1.76. 

We have found that whenever L > 0.86 the onset 
of convection is three-dimensional and caused by 
solution I. Moreover, when L < 0.86 the convection is 

two-dimensional and may be composed by any linear 
combination of solutions I and II. The two-dimcn- 

sional flow patterns of solutions I and II are shown 
in Fig. 3. Solution I gives a flow structure of two cells, 
whereas the structure of solution II consists of three 
cells. 

It is well known in thermal convection problems 
that the linear equations admit many different solu- 
tions [8]. However, by taking into account the non- 
linear terms the question of pattern may be deter- 

mined. We shall therefore study the two-dimensional 
version of equations (4) without cancelling the right- 
hand side. 

4. NON-LINEAR STABILITY ANALYSIS 

In this section we shall examine the stability prop- 
erties of the two- and three-cell structures occurring 
for short cylinders at slightly supercritical Rayleigh 
numbers. By taking into account the right-hand side 
of equations (4), including the non-linear terms, we 

derive the so-called Landau equations for the 
problem. This non-linear system of equations will be 

the basis for our stability analysis. 
Since the motion is two-dimensional we introduce 

the stream function Ic, by 

(13) 
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FIG. 3. Computed streamlines (solid) and isotherms (dotted) for solution I (left) and solution IL (right). 

where u and v are the radial and angular velocity 
components, respectively. Introducing these expres- 
sions into the two-dimensional version of equations 
(4) we obtain 

V2$+Ra Ecos$-k$sin+ 
( > 

=0 

with the boundary conditions 

+=0=0 at 

The solution of equations 

(14) 

r= 1. (15) 

(14) and (15) can be 
approximated by the formal expanstons 

Ra= Ra,+Ra,+Ra2+~~~. (16) 

Moreover, we introduce multiple time scales given by 

(17) 

We suppose 

*, = O(E’) as E+O (18) 

holds uniformly, and similarly for the other quantities. 
By introducing expansions (16) and (17) into equa- 
tions (14) and equating terms of the same order, we 
find an infinite set of linear equations. 

The solutions of the first-order system satisfying 
boundary conditions (15) may be written as 

+I = Q$,+Ws> 0, = Q@,+% (19) 

where I(le, 8, and tis, Bs are the solutions found in 
the linear analysis, corresponding to the two- and 

three-cell structures, respectively. Here Q and S are 
amplitudes of order E. 

The operator on the left-hand side of equations (14) 
is self-adjoint, see Appendix B. Applying the special 
scalar product (B3) we find the following solvability 
conditions for the second-order system : 

a 
Ra, =O, -=O. 

at, 

The solvability conditions of the third-order system 
determine Ra, and a/at,. Neglecting the third-order 
terms of the expansions for Ra and a/at, we get the 
following Landau equations : 

Ao$Q = ARQ-Pe(Q2+2Ra, S’)Q 

A,$S = ARS- P,(Q2+2Ra, S2)S (21) 

where AR = Ra- Ra, and A,, As, P, and P,y are 
constants calculated to be 

A, = 4.95, A,y = 3.05 

P, = P, = P = 7.66. (22) 

Equations (21) describe the evolution of the ampli- 
tudes due to non-linear interactions. 

For subcritical Rayleigh numbers, AR < 0, it fol- 
lows that Q -+ 0, S -+ 0 as t + co. For supercritical 
Rayleigh numbers, AR > 0, the motionless con- 
duction state Q = S = 0 is unstable. However, there 
exist steady non-zero solutions satisfying 

Q’+2Ra, S2 = AR/P (23) 

or we may write 

Q2= AR s2 = 
$AR 

P(1-t2Ra,% P(1+2Ra, p2). 

(24) 
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FIG. 4. Computed streamlines (solid) and isotherms (dotted) for the composite solutions corresponding 
to 2Ru‘ pZ = l/3 (left) and 3 (right). 

Here p* may take any value from zero to infinity. The 

p2-values zero and infinity represent the flow patterns 
consisting of two and three cells, respectively (see Fig. 
3). Any other value of 1’ represents a composition 
of the two- and three-cell structures. Two different 
composite flow patterns are shown in Fig. 4. 

By considering small perturbations superposed on 

the steady state solutions (23), it is proved that the 
solutions are stable for all values of p. The non-linear 
analysis therefore fails in selecting a preferred flow 
pattern. This may be explained by the symmetry of 

the problem as it appears in the Landau equations 
(Pv = P,s). Therefore, in order to find a preferred flow 

one should include other effects, as for example a non- 
linear term in the momentum equation (non-Darcy 
fluid) or anisotropy [9]. However, in the next section 
we shall show that small irregularities of the pre- 
scribed temperature at the boundary select a unique 

value of p. 
In order to draw the bifurcation diagram it is con- 

venient to introduce the amplitude A defined by 

A* = Q’+2Ra, S”. (25) 

From equation (23) we obtain 

Thus, according to the non-linear analysis, there is a 
sharp transition from conduction to convection when 
the Rayleigh number exceeds the critical value Ra,. 
This is a so-called perfect bifurcation, sketched in 
Fig. 5. 

5. SMOOTH TRANSITION BY THERMAL 

FORCING 

In the above section we found that for short cyl- 
inders there is a sharp transition from the conduction 

state to the convection state at Ra, = 46.27, when the 

temperature at the cylinder wall varied linearly in the 
vertical direction. However, it is easily shown that 

for any other applied temperature, the transition to 
convection occurs smoothly at Ra, = 0. Thermal per- 
turbations of the circumferential temperature may 
therefore alter the perfect bifurcation at Ra con- 
siderably. We are now going to examine these effects. 
This is of interest, because inaccuracies and different 
forms of thermal noise are always present in exper- 
iments and in applications. 

Let 8f(&) represent the temperature perturbation. 
6 is a small parameter proportional to the magnitude 
of the noise. It is convenient for the following analysis 
to expand f(4) in a Fourier series. The circumfer- 

ential temperature is then given by 

Th = TO - : sin 4 

fs i (c,, cos n4+s, sin n$). (27) 
ll= I 

I 

A 

0 --___-----~___---~ 

FIG. 5. Sketch of the perfect bifurcation case: -, stabk 
solution ; p-p_. unstable solution. 
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Here the c,-terms correspond to the part of the per- 
turbation that is symmetric about the horizontal 
diameter. The s,-terms correspond to the asymmetric 

part. The corresponding quasi-static temperature T, 

becomes 

T, = T, - ir sin 4 

+6 1 r”(c, cos n4+s,, sin n+). (28) 
“= I 

Substituting for T,, equations (14) are replaced by 

= -Ra6 f nF’(c,cos(n-1)4+s,sin(n-1)4) 
n= I 

V*0-; ~cos+!~sind 
( r a4 > 

=G+v*VtI 

+6 i nr”-’ c, 
i( 

ati. q 

,1= I 
Fsmn&+l*cosn$ 

r &$ > 

-sn 
( 

a* la$ 
GCOsnq5---sslnn4 

r 84 >I 
(29) 

which constitute the governing equations for the per- 
turbed problem. 

To find steady solutions of equations (29) for values 
of Ra close to Ra,, we assume the double expansions 

where E is the magnitude of the convection amplitude. 
Notice, however, that the terms with q = 0 correspond 
to the non-linear solutions found in Section 4. The 
terms with q # 0 give the modification of those solu- 

tions. The equations determining tjO, and O,,, are 

i 

-Ra, f nr”- ’ (c, cos (n- 1)4 
II= I 

Wo,) = +s, sin (n - 1)4) 

0 I 
(31) 

A,;Q = ARQ-P(Q2+2Ra, S’)Q+b, 

A&S = ARS-P(Q2+2Ra, S*)S+b,. (36) 

where L and R are defined in Appendix B. The solv- 
ability condition of equation (31) requires 

“$, n<$lr”- ’ ( c, cos (n- l)4+sn sin (n- I)$)) = 0 

(32) 

Here A,, A, and P are the same coefficients as in 
Section 4, and 

where $, represents the ijo- and $,-solutions of Sec- 
tion 4. Conditions (32) are in general not satisfied 
whenever any c, # 0. In that case expansions (30) 
become invalid as Ra -+ Ra,. 

b, = Ra, S(t,b&nr"- ‘c, cos (n- l)$) 

bs = Ra, G($Jnr”-‘c, cos (n- l)$). (37) 

We notice that the s, sin n4 terms do not effect the 
values of b, and b, at O(6). We may therefore, without 

loss of generality, exclude asymmetric perturbations 
about the horizontal diameter. 

5.1. Discussions of the steady solutions 

On the other hand, if all values of c, are zero, The amplitude equations (36) describe the evol- 
condition (32) is satisfied for all values of s,. Expan- ution of the amplitudes Q and S due to non-linear 
sions (30) converge uniformly to expansions (16) and interactions for AR of order 8*13. We consider arbi- 
(17) as 6 + 0. Thus, for small asymmetric per- trary temperature perturbations, which generally 

turbations about the horizontal diameter, the solu- 
tions of equations (29) are similar to the solutions of 
equations (14). The perfect bifurcation is replaced by a 
weakly imperfect bifurcation. The transition remains 
sharp, but is slightly perturbed. 

If there exists c, # 0, expansions (30) break down 
as Ra + Ra,, and new expansions must be determined. 

This type of problem has been fully discussed by 
Matkowsky and Reiss [S] and Tavantzis et al. [6], 
using matched asymptotic expansions. See also Rees 

and Riley [lo]. The appropriate inner expansions are 

ti=Y$,+Y2$,+Y3ti,+“. 

O=yO,+y*0,+y%,+.~~ 

Ra = Ra,+y*Ra, +y3Ra,+ ... (33) 

where y = 6 I/‘. Moreover, to include the time, we take 

a a a 
g=Y2~+Y3~+“’ 

The problems of order y and y2 are equivalent to 

the first- and second-order problems considered in 
Section 4. The O(y3)-equations are 

‘w3) 

-Ra,DO,-Ru, f nr’-‘(c,cos(n-1)4 
n= I 1 

+s, sin (n-1)4) 

de, 
at +v, *ve*+v,.v0, 

Z 1. 

(35) 

The solvability conditions of equation (35) give two 
equations for Ra, in terms of Q, S, aQ/dt, and aS/at,. 
Omitting the details, the amplitude equations of the 
problem now become 
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imply that b, # 0 and 6,s # 0. The amplitude equa- 
tions then yield the following steady-state solutions : 

S=PQ (38) 
where 

and 

P = bslb, (39) 

P(1+2Ra,p2)Q3-ARQ-h, = 0. (40) 

This results in one, two or three solutions for S and 
Q as Ra is less than, equal to, or greater than Ra,, 

where 

Ra, = Ra,+;{2P(l+2Ru, $)b;) “I. (41) 

We define the amplitude 

A = ,/(1+2Ra, $)Q (42) 

which is consistent with equation (25). By solving Q 
from equation (40) with b, positive we get the solu- 
tions for A as shown in Fig. 6. A negative value of b, 
reflects the solutions about the Ra-axis. 

By standard methods it is easily proved that 
the positive branch is stable for all p. The negative 
branches for Ra > Ra, are, however, unstable. 

Considering /AR1 -+ a in equation (40), we find 

that the solutions are matched asymptotically to the 
solutions found in Section 4. The positive branch 

approaches J(AR/P), and the lower negative branch 

approaches -J(AR/P) ( see equation (26)). More- 
over, the zero-solution is approached by the positive 

branch as AR--t -m, and by the upper negative 

branch as AR -+ x. 
We notice that the perturbations of the cir- 

cumferential temperature have changed the bifur- 
cation dramatically. Figure 6 shows no sharp tran- 

sition, as Fig. 5, from conduction to convection at 
RU = Ru,, but a smooth transition at Ra = 0. The 

perturbations result in a so-called imperfect bifur- 
cation. Another important feature is that the ampli- 

I I I 

% 9 

FIG. 6. Sketch of the imperfect bifurcation case: -, stable 
solution ; ~- --. -, unstable solution : ---, perfect bifur- 

cation curves. 

tudes Q and S now become fully determined by AR, 
b, and bs. This is in contrast to the perfect bifurcation 
case where x could take any real value, giving an 
infinite number of steady solutions. 

Finally, we turn to the question of preferred flow 

pattern for two special types of perturbations, giving 
imperfect bifurcation. The perturbations of the 
applied temperature can be divided into symmetric 
and asymmetric parts about the vertical diameter, 
consisting of even and odd cos n~$ terms, respectively. 

From equations (37) it follows that the symmetric 
perturbations give h, = 0, whereas symmetric per- 
turbations give b, = 0. Furthermore, from equations 
(38) to (40) it follows that S = 0 and Q # 0. when 
h,s = 0. When h, = 0, WC easily find that Q = 0 and 
S # 0. Therefore, when the perturbations arc sym- 

metric about the vertical diameter, the flow consists 
of the symmetric two-cell pattern. For asymmetric 
perturbations the flow consists of the symmetric three- 

cell pattern. These types of flow are shown in Fig. 3. 

6. SUMMARY 

In the present paper we have considered natural 
convection in a saturated porous medium confined by 
a horizontal circular cylinder. The cylinder wall is 
non-uniformly heated to establish a linear tem- 
perature distribution in the vertical direction, and the 
appropriate temperatures are assumed to be main- 
tained on the walls at all times. 

The analysis indicates that the critical Rayleigh 

number Ra, and the corresponding wave number Z, 
depend on the length L of the cylinder. The results 
are displayed in Fig. 2 which gives Ra, as a function 
of L. For long cylinders the convection is three-dimen- 
sional. For a short cylinder (L < 0.86), however, the 
onset of convection occurs at Ra, = 46.27 and x, = 0, 
which means that the convection is two-dimensional. 
Moreover, in this case the conduction state bifurcates 
into two qualitatively different convective solutions. 
One of the solutions gives a symmetric flow pattern 
consisting of two counter-rotating rolls. The flow of 
the second solution consists of three rolls. In order to 
follow the solutions into the supercritical regime we 
have derived the Landau equations of the problem. It 
follows that both solutions are stable solutions of the 

corresponding non-linear problem. We also find that 
any linear composition of these two solutions is a 

stable solution. 
In experiments and in real applications the sharp 

transition rarely occurs. Usually one observes that the 
transition occurs smoothly. Imperfections, impurities 
or other inhomogeneities tend to distort the 
transition. We have studied these effects by con- 
sidering small perturbations (thermal forcing) super- 
posed the temperature of the cylinder wall. In the case 
that the perturbations are not asymmetric about the 
horizontal diameter of the cylinder, the transition is 
changed dramatically. The transition now emanates 
smoothly from Ru = 0. Moreover, the corresponding 
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non-linear flow turns out to be uniquely determined. 
On the other hand, when the perturbations are asym- 
metric about the horizontal diameter, we find that the 
perturbations modify, but do not destroy the sharp 
transition. This is a so-called weak imperfection case. 
However, since thermal noise is arbitrary and always 
present in experiments, it is unlikely that weak imper- 
fect or perfect bifurcation will be observed. We would 
expect smooth transition in experiments of the present 
problem. 

~c~~~w~~~ge~e~r~-~e authors are grateful to Dr D. S. 
Riley, University of Bristol, for having directed their atten- 
tion to the problem investigated in this paper and for valu- 
able discussions. 
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APPENDIX A. THE CIRCUMFERENTIAL 
TEMPERATURE 

To establish the prescribed temperature 

T, = T,-+ATsin 4 (AL) 

at the boundary of the cylinder, we consider the steady-state 
conduction in a large plate with a circular hole of radius rO. 
Let (x, y) be Cartesian coordinates with the origin at the 
centre of the hole. Moreover, (r, 4) denote polar coordinates 
with the line #I = 0 along the x-axis and rZ = .v*+y’. We 
want to find the temperature of the plate under the following 
conditions : no heat exchange takes place with the hole ; no 
heat conduction in the direction normal to the plate ; at large 
values of r the heat is conducted in the y-direction, only. The 
system to be solved, giving T = Tb at r = rO, is then 

($+$)T=O. rrro 

dT 
- = 0, 
ar 

r = r0 

_________----- ___--------------____________________ 

FIG. Al. The temperature distribution of the plate outside 
the hole of radius rO. The dashed curves represent the 
isotherms. The temperature difference is equal to QAT 
between each pair of neighbouring isotherms. The solid lines 
at T,k ;AT represent boundaries of constant temperature. 
The double lines normal to the isotherms represent insulated 

boundaries. 

The solution is 

T= T+(l+-&)y (A3) 

(-4 

or in polar coordinates 

(A4) 

The temperature distribution of the plate is shown in Fig. 
Al. The same temperature distribution may also be achieved 
in a plate of finite extent. For example, as illustrated in 
Fig. Al, by introducing boundaries of constant temperature 
along two isotherms and insulated boundaries normal to the 
isotherms. 

APPENDIX B. SELF-ADJOINTNESS OF 
EQUATION (14) 

The left-hand side of equation (14) may be written as 

[_yD ‘;:][;I = L(a) = 0 (Bl) 

where 

Let ti and R” be any functions which satisfy the same bound- 
ary conditions as $2. We define the scalar product 

{a, p) = (II/,$“) + 2Ra(B’B”) (83) 

where ( ) is the average over the entire volume, i.e. 

( )d@rdr. (B4) 

Then the operator L has the following property of self- 
adjointness : 

{CY, L(sl”)j = (fir, L(a)). W) 
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CONVECTION NATURELLE DANS UN CYLINDRE POREUX HORIZONTAL 

R&sum&On considtre la convection naturelle dans un cylindre horizontal a section circulaire et poreux. 
La paroi du cylindre est chauffee de faGon non uniforme pour crter une temperature lineaire dam la 
direction verticale, avec les sections terminales parfaitement isolees. Quand L > 086, un Ccoulement unique 
tridimensionnel est determine au debut de la convection. Pour des cylindres courts (L < 086) la convection 
est bidimensionnelle. Dans ce cas il existe deux solutions permanentes differentes aux nombres de Rayleigh 
supercritiques, consistant respectivement en deux et trois rouleaux. On prouve que les deux structures 
d’ecoulement et une composition quelconque de ces structures sont stables. Neanmoins. en introduisant 

un forqage thermique dans la temperature appliqute, I’tcoulement devient determine de faGon unique. 

NATtiRLICHE KONVEKTION IN EINEM WAAGERECHTEN POROSEN ZYLINDER 

Zusammenfassung-Die natiirliche Konvektion in einem poriisen waagerechten Kreiszylinder wird betrach- 
tet. Urn eine lineare Temperaturverteilung in senkrechter Richtung zu erreichen, wird die Zyhnderwand 
ungleichformig beheizt ; die Stirnflachen des Zylinders sind adiabat. Fur f. > 0,86 ist die Stromung beim 
Einsetzen der Konvektion dreidimensional, fur kurze Zylinder (L < 086) zweidimensional. In diesem Fall 
existieren bei iiberkritischen Rayleigh-Zahlen zwei unterschiedliche stationare Liisungen mit zwei bzw. drei 
Konvektionswalzen. Es zeigt sich, da5 beide Striimungsformen und beliebige Mischformen stabil sind. 

Wenn jedoch eine treibende Temperatur aufgepragt wird, erhalt man eine eindeutige Losung. 

ECTECTBEHHAX KOBEKHMII B FOPA30HTAJIbHOM I.@iJIMHflPE 213 I-IOPHCTOFO 
MATEPMAJIA 

AsmoTaqm+---Mccnenyercn ecrecrBeHHaK KoHseKwin B ropn30nrrurbnoh4 KPY~OBOM 4inminpe 5i3 nopec- 

TOGO Marepmna. CTeHKa wimwpa HepaBHoMepHo HarpeBaeTcn, TaK STO ycraHaBminaeTcn nHHeiiHoe 

paC,I~,,WeHHe TeMnepaTypbl B BepTHKaJIbHOM HaIIpaBJIeHHH,B TO BpeMK KaK TOpUeBble IIOBepXHOCTH 

IIO~HOCTblO H30JIHpOBaHbLnpH I!,> 0,86 IIOCJle B03HHKHOBeHHI KOHBeKUHH HMWT MWTO OAHO3HaYHOe 

peLUeIiHe B BHJleTPeXMepHOrO TeSeHHR. B CJty'iae IlHJIHHApOB MiWIOti~HHbl(L< 086) KOHBeKIWl XBJI- 

IleTCII nByMepHOfi, IIpH'ieM JVIK 3aKpHTHWCKHX 'IBCWI P3JleK CyIUeXTByIOT nBa pa3JIH'lHbJX CTaIViOHap- 

HbIX peUIeHHK, COCTORIlWX COOTBeTCTBeHHO H3 nByX B TpeX Ba."OB. aOKa3aH0, ST0 Otk CFpyKTypbl 

Te'#eHAIl N nro6an HXKOMllO3HUHIIIB~llK)TCIyCTOiiSHBblMH.OllHaKO l'%p&i BHeIIIHeMTeMOBOMBO3i,eii‘?T- 


